Crateras de impacto
A cratera lunar Daedalus no lado oculto da Lua.
O outro principal processo geológico que afetou a superfície lunar foi a formação de crateras de impacto, em consequência da colisão de asteroides e cometas com a superfície lunar. Estima-se que só na face visível existam trezentas mil crateras com diâmetro superior a 1km. Algumas são batizadas em homenagem a investigadores, cientistas e exploradores. A escala de tempo geológico lunar baseia-se nos principais eventos de impacto, como o nectárico, ímbrico ou o Mare Orientale, estruturas caracterizadas por vários anéis de material revolto, geralmente com centenas ou dezenas de quilómetros de diâmetro e associadas a uma gama diversa de depósitos de material projetado que formam um horizonte estratigráfico regional. A ausência de atmosfera, meteorologia e processos geológicos recentes significa que muitas destas crateras se encontram perfeitamente preservadas. Embora só algumas das bacias com múltiplos anéis tenham sido datadas em definitivo, são, no entanto, usadas como referência para atribuir datas relativas. Uma vez que as crateras de impacto se acumulam a um ritmo relativamente constante, a contagem do número de crateras em determinada área pode ser usada para estimar a idade da superfície. As idades radiométricas das rochas de impacto recolhidas durante as missões Apollo datam de há 3,8-4,1 mil milhões de anos. Isto tem sido usado para propor a existência de um Intenso bombardeio tardio de impactos.
A crosta lunar é revestida por uma superfície de rocha pulverizada denominada regolito, formada por processos de impacto. O regolito mais fino, o solo lunar de dióxido de silício, tem uma textura semelhante à neve e odor semelhante a pólvora usada. O regolito das superfícies mais antigas é geralmente mais espesso que o das superfície mais jovens, variando entre 10 a 20 metros nas terras altas e 3 a 5 metros nos mares.[60] Por baixo da camada de regolito encontra-se o megaregolito, uma camada de rocha matriz bastante fraturada com vários quilómetros de espessura.
Presença de água
Não é possível suster água em estado líquido na superfície lunar. Quando exposta à radiação solar, a água decompõe-se rapidamente através de um processo denominado fotólise, perdendo-se para o espaço. No entanto, desde a década de 1960 que os cientistas têm levantado a hipótese de existirem na Lua depósitos de água sob a forma de gelo. O gelo teria origem em impactos de cometas ou possivelmente produzido através da reação entre rochas lunares ricas em oxigénio e o hidrogénio do vento solar, deixando vestígios de água que poderiam ter sobrevivido nas crateras frias e sem luz dos polos lunares. As simulações em computador sugerem que até 14 000 km² da superfície podem estar em sombra permanente. A presença de quantidades utilizáveis de água na Lua é importante para se considerar a viabilidade económica de uma eventual colonização da Lua, uma vez que o transporte a partir da Terra seria economicamente inviável.
Em décadas posteriores, têm vindo a ser encontrados vestígios de presença de água na superfície lunar. Em 1994, uma experiência com radar biestático pela sonda Clementine indicou a existência de pequenas bolsas de água congelada perto da superfície. No entanto, observações posteriores no radiotelescópio de Arecibo sugerem que estas bolsas se podem tratar, na realidade, de rochas projetadas a partir de crateras de impacto recentes. Em 1998, o espectómetro de neutrões a bordo da sonda Lunar Prospector indicou que há hidrogénio presente em elevada concentração no primeiro metro de profundidade do solo nas imediações das regiões polares. Em 2008, uma amostra de rocha vulcânica trazida para a Terra pela Apollo 15 revelou que existiam pequenas quantidades de água no seu interior.
Ainda em 2008, a sonda Chandrayaan-1 confirmou a existência de água à superfície através do mapeador de mineralogia a bordo. O espectómetro observou linhas de absorção em comum com o hidroxilo na luz solar refletida, fornecendo evidências de grandes quantidades de água na forma de gelo na superfície lunar. A sonda mostrou que estas concentrações podem ser tão elevadas como 1 000 ppm. Em 2009, o LCROSS enviou um módulo de impacto para uma cratera polar em sombra permanente, detetando pelo menos 100 kg de água numa pluma de material projetado. Uma outra análise dos dados do LCROSS mostrou que a quantidade de água detetada estava próxima dos 155 kg (±12 kg).
Em 2018, a moganita, um dióxido de silício semelhante ao quartzo, foi detectado em rochas lunares. Isso é significativo porque a moganita é um mineral que requer água para se formar, reforçando a crença de que a água existe na Lua. Em agosto do mesmo ano, confirmando as previsões anteriores, uma recente pesquisa pela revista Proceedings of National Academy of Sciences (PNAS), confirmou a presença de gelo nos polos lunares. A pesquisa utilizou dados do Mapeador de Mineralogia da Lua (M3) a bordo da espaçonave Indiana Chandrayaan-1 e analisou as propriedades reflexivas da superfície lunar. O equipamento ainda forneceu medições diretas de como as moléculas absorvem a luz infravermelha, proporcionando a capacidade de diferenciar entre água líquida, vapor e gelo sólido.
Em outubro de 2020, a NASA confirmou a existência de água na superfície lunar. Após mais de dois anos de análises, as observações feitas foram publicadas e confirmam, de forma inequívoca, que existe água na Lua. Outro estudo mostra que a água pode se acumular em cerca de 40 000 quilômetros quadrados do satélite, uma superfície similar à de Extremadura (Espanha). A descoberta foi feita após o telescópio SOFIA ser apontado para a cratera Clavius, que possui mais de 200 quilomêtros de diâmetro perto do Polo Sul da Lua, quando captou ondas infravermelhas que apenas a água pode emitir, "Não há nenhum outro material na Lua que possa dar esse mesmo sinal" diz pesquisadores em entrevista à revista Nature Astronomy. Casey Honniball, planetologista da Universidade do Havaí (Estados Unidos) e pesquisadora da NASA, juntamente com sua equipe, afirma que a quantidade de água na cratera é de cerca de 200 microgramas para cada grama de terra lunar. Embora já tenha havido sinais de água na superfície lunar, essas novas descobertas sugerem que ela é mais abundante do que se pensava anteriormente.
Campo gravitacional
Campo gravitacional da Lua — This map shows the gravity field of the moon as measured by NASA's GRAIL mission. The viewing perspective, known as a Mercator projection, shows the far side of the moon in the center and the nearside (as viewed from Earth) at either side. Units are milliGalileos where 1 Galileo is 1 centimeter per second squared. Reds correspond to mass excesses which create areas of higher local gravity, and blues correspond to mass deficits which create areas of lower local gravity.
A aceleração gravitacional na superfície da Lua em m/s² (À esquerda: face visível. À direita: face oculta) — Map of gravity acceleration values over the entire surface of Earth's Moon. Taken from Lunar Gravity Model 2011.
O campo gravitacional da Lua tem sido medido através do rastreio do efeito Doppler de sinais de rádio emitidos a partir de veículos em órbita. As principais características da gravidade lunar são concentrações de massa, anomalias gravitacionais positivas de grande dimensão, associadas a algumas das maiores bacias de impacto, causadas em parte pelos densos depósitos basálticos que preenchem estas crateras. Estas anomalias influenciam significativamente a órbita de veículos em torno da Lua. No entanto, há ainda eventos sem explicação; as correntes de magma não explicam por si só todo o mapa gravitacional, e existem algumas concentrações de massa que não têm relação com o vulcanismo dos mares.
No entanto, devido à rotação sincronizada da Lua, não é possível efetuar o rastreio de veículos espaciais muito para além das extremidades do lado visível, pelo que o campo gravitacional do lado oculto se encontra ainda pouco caracterizado. A aceleração provocada pela gravidade na superfície da Lua é de 1,6249 m/s², cerca de 16,6% daquela da superfície terrestre. Quando considerada a totalidade da superfície, a variação na aceleração gravitacional é de cerca de 0,0253 m/s² (1,6% da aceleração provocada pela gravidade). Uma vez que o peso está diretamente relacionado com a aceleração gravitacional, os corpos na Lua pesam apenas 16,6% daquilo que pesariam na Terra.
Campo magnético
A Lua tem um campo magnético exterior de cerca de 1-100 nanoteslas, menos de um centésimo do campo magnético terrestre. A Lua não tem um campo magnético global dipolar, como aqueles que são gerados pelo geodínamo característico de um núcleo de metal líquido, apresentando apenas magnetização da crosta, provavelmente adquirida muito cedo na sua História quando o geodínamo estava ainda em funcionamento. De acordo com uma hipótese alternativa, alguma da magnetização restante pode ter origem em campos magnéticos transitórios gerados durante grandes eventos de impacto, através da expansão de uma nuvem de plasma gerada por esse impacto na presença de um campo magnético ambiente. Isto é apoiado pela localização aparente das maiores magnetizações da crosta perto dos antípodas das maiores bacias de impacto.
Cauda lunar
A lua é seguida por uma cauda de matéria irradiada. A cauda lunar é feita de átomos de sódio lançados do solo lunar para o espaço por quedas de meteoros e, em seguida, empurrados por centenas de milhares de quilômetros pela radiação solar. A cauda lunar é invisível a olho nu. Durante alguns dias de lua nova a cada mês, no entanto, o feixe se torna visível para telescópios de alta potência que podem detectar o fraco brilho laranja do sódio no céu. O feixe então aparece como um ponto brilhante e difuso no céu oposto ao sol, cerca de cinco vezes o diâmetro da lua cheia e 50 vezes mais escuro do que os olhos humanos podem perceber. Pesquisadores detectaram uma "mancha de sódio" pela primeira vez na década de 1990. Mas, embora o ponto sempre apareça ao mesmo tempo no ciclo lunar, seu brilho varia muito. A câmera do céu inteiro (que pode analisar os comprimentos de onda de luz emitidos por elementos específicos, como o sódio) fez cerca de 21 000 imagens da lua, de 2006 a 2019.
Atmosfera
A atmosfera da Lua é tão rarefeita que pode praticamente ser considerada vácuo, sendo a sua massa total inferior a 10 toneladas. A pressão à superfície desta pequena massa é de cerca de 3 x 10−15 atm (0,3 nPa) e varia ao longo do dia lunar. A atmosfera tem origem na desgaseificação e pulverização catódica – a libertação de átomos do solo lunar provocada pelo bombardeio de íons do vento solar. Entre os elementos detectados estão o sódio e o potássio, produzidos pela pulverização catódica (também encontrados nas atmosferas de Mercúrio e de Io); o hélio-4, produzido pelo vento solar; e árgon-40, rádon-222 e polónio-210, desgaseificados após serem criados por decaimento radioativo no interior da crosta e do manto. A ausência de elementos neutros (átomos ou moléculas) como oxigénio, nitrogénio, carbono, hidrogénio e magnésio, que estão presentes no regolito, ainda não é compreendida. A sonda Chandrayaan-1 assinalou a presença de vapor de água em diferentes concentrações de acordo com a latitude, com a concentração maior a ocorrer entre os 60-70º. É provavelmente gerado pela sublimação de gelo no rególito. Estes gases podem regressar ao monólito devido à gravidade ou então perderem-se no espaço, tanto através da radiação solar como, se tiverem sido ionizados, serem levados pelo campo magnético do vento solar.
Estações
A inclinação axial da Lua em relação à eclíptica é de apenas 1,5424º, muito inferior aos 23,44º da Terra. Devido a isto, a iluminação solar varia muito pouco em função das estações do ano e os elementos topográficos desempenham o principal papel nos efeitos das estações. A partir de imagens obtidas pela sonda Clementine em 1994, é provável que quatro regiões montanhosas na orla da cratera Peary, no polo norte, estejam permanentemente iluminadas, não existindo regiões semelhantes no polo sul. De igual modo, há locais que se encontram em sombra permanente na base de várias crateras polares, sendo estes locais extremamente frios. A sonda Lunar Reconnaissance Orbiter mediu a temperatura de verão mais baixa nas crateras do polo sul, registando 35 K (-238 °C), e na cratera Hermite, no polo norte, registando 26 K. Trata-se da temperatura mais fria alguma vez registada por uma sonda espacial no Sistema Solar, inferior até à da superfície de Plutão.
Relação com a Terra
A Lua é pequena em relação à Terra, com cerca de um quarto do diâmetro do planeta e 1/81 da sua massa. É a maior lua do Sistema Solar proporcionalmente ao tamanho do seu planeta, embora Caronte seja maior em relação ao planeta anão Plutão, com cerca de 1/9 da sua massa. Ainda assim, a Terra e a Lua são consideradas um sistema satélite-planeta, em vez de um sistema de planeta duplo, uma vez que o seu baricentro (o centro de massa comum) se situa 1700 km no interior da superfície da Terra.
Órbita
Esquema que indica as inclinações orbitais axiais da Terra e da Lua (fora de escala).
A Lua descreve uma órbita completa em torno da Terra e em relação às estrelas fixas cerca de uma vez a cada 27,3 dias (o seu período sideral). No entanto, uma vez que a Terra descreve ao mesmo tempo a sua órbita em redor do Sol, a Lua demora ligeiramente mais tempo a apresentar a mesma fase lunar, cujo ciclo demora cerca de 29,5 dias (o seu período sinódico). Ao contrário da maior parte dos satélites ou de outros planetas, a Lua orbita mais perto do plano eclíptico do que do plano equatorial. A órbita lunar é ligeiramente perturbada pelo Sol e pela Terra de várias maneiras e com mecanismos de interação complexos. Por exemplo, o plano de movimento orbital da Lua roda gradualmente, o que afeta por sua vez outros aspetos do movimento lunar. Estes efeitos são descritos em termos matemáticos pelas leis de Cassini.
Aparência a partir da Terra
A Lua encontra-se em rotação sincronizada, ou seja, o tempo que demora a descrever uma rotação em torno do seu eixo é o mesmo que leva para completar uma órbita à volta da Terra. Isto faz com que tenha praticamente sempre a mesma superfície voltada para a Terra. A Lua já rodou a uma velocidade maior durante a sua formação, mas ao longo do período inicial da sua história a sua velocidade foi diminuindo e sincronizou-se nesta orientação em resultado de efeitos de fricção associados a deformações da força de maré provocadas pela Terra. O lado da Lua voltado para a Terra é denominado "face visível" ou "lado visível", e o oposto é denominado "face oculta ou "lado oculto". A face oculta é por vezes denominada "lado negro", embora na realidade seja tão iluminada quanto a face visível: uma vez a cada dia lunar.
A Lua possui um albedo excepcionalmente baixo, o que lhe confere uma refletância um pouco mais brilhante do que asfalto gasto. Apesar disso, é o segundo corpo mais brilhante no céu a seguir ao Sol. Isto deve-se em parte ao brilho proporcionado pelo efeito da oposição. Durante as fases de quarto, a Lua aparenta ter um décimo do brilho da lua cheia, em vez de metade, como seria expectável. Para além disso, a constância de cor da visão recalibra as relações entre as cores de um objeto e a sua envolvente; e, uma vez que o céu à volta da Lua é bastante mais escuro, os olhos veem a lua como um objeto brilhante. As orlas da lua cheia aparentam ser tão brilhantes como o centro, sem escurecimento de bordo, uma vez que o solo lunar reflete mais luz em direção ao Sol do que em todas as outras direções. A Lua aparenta ser maior ao estar mais próxima da linha de horizonte, embora na realidade isto se deva apenas a um efeito psicológico conhecido por ilusão lunar, descrito pela primeira vez no século VII a.C..
O ponto de maior altitude da Lua no céu varia. Embora tenha quase o mesmo limite do Sol, este valor difere em função da fase lunar e da estação do ano, sendo o mais alto durante a lua cheia de inverno. O ciclo de nodos lunares, com a duração de 18,6 anos, também tem influência: quando o nodo ascendente da órbita lunar se encontra no equinócio de verão, a declinação lunar pode atingir os 28º em cada mês. A orientação do crescente lunar também depende da latitude do observador: em latitudes próximas do equador, a forma do quarto assemelha-se a um sorriso.
Tem havido diversas controvérsias ao longo da história sobre se as características da superfície lunar se alteram com o decorrer do tempo. Hoje, muitas destas alegações são consideradas ilusórias e resultantes da observação sob diferentes condições de luz, fenômenos de seeing ou esquemas incorretos. No entanto, ocasionalmente ocorrem fenómenos de desgaseificação, que podem ser responsáveis por uma pequena percentagem dos fenômenos lunares transitórios. Recentemente, foi sugerido que uma região com cerca de 3 km de diâmetro na superfície lunar foi modificada por uma libertação de gás há cerca de um milhão de anos. A aparência da Lua, tal como a do Sol, pode ser afetada pela atmosfera da Terra. Entre os efeitos mais comuns estão um halo de 22º que se forma quando a luz da Lua é refratada pelos cristais de cirroestratos a elevada altitude, e coroas quando a Lua é observada através de nuvens pouco espessas.

As variações mês a mês do ângulo entre a direção da iluminação do Sol e da visualização a partir da Terra e as fases da Lua que resultam disso (em espanhol).
Efeitos nas marés
Libração da Lua ao longo de um mês lunar.
As marés na Terra são essencialmente provocadas pela variação de intensidade da força gravitacional da Lua de um lado para o outro do planeta, a qual é denominada força de maré. Isto forma duas dilatações de maré na Terra, mais facilmente observáveis em alto mar na forma de marés oceânicas. Uma vez que a Terra gira em torno de si própria cerca de 27 vezes mais rapidamente do que a Lua roda à sua volta, as dilatações são arrastadas pela superfície terrestre mais rapidamente do que o movimento da Lua, completando uma rotação em volta da Terra por dia, à medida que roda no seu eixo. As marés oceânicas são ainda amplificadas por outros efeitos: a fricção no manto oceânico, a inércia do movimento da água, o estreitamento das bacias oceânicas perto de terra e oscilações entre diferentes bacias oceânicas. A atração gravitacional do Sol nos oceanos da Terra é de cerca de metade da Lua, sendo a interação entre ambas a responsável pela mudança das marés.
O acoplamento gravitacional entre a Lua e a protuberância de maré mais próxima de si atua como torque na rotação da Terra, roubando momento angular e energia cinética à rotação da Terra. Por conseguinte, é acrescentado momento angular à órbita da Lua, o que a acelera e a leva para uma órbita mais distante e longa. Como resultado, a distância entre a Terra e a Lua está aumentando, enquanto a rotação da Terra se encontra em desaceleração. As medições realizadas a partir de experiências com refletores de laser durante as missões Apollo revelaram que a distância da Lua à Terra aumenta anualmente 38 milímetros (embora isto seja apenas 0,10 ppm/ano do raio da órbita da Lua). Os relógios atómicos revelam que o dia terrestre aumenta cerca de 15 microssegundos em cada ano, aumentando lentamente o ritmo de ajuste dos segundos bissextos do Tempo Universal Coordenado (UTC). Se não houvesse interferências, o movimento de maré continuaria até que a rotação da Terra e o período orbital da Lua se sincronizassem. No entanto, muito antes desse processo se completar, o Sol irá transformar-se numa gigante vermelha que irá engolir a Terra.
A superfície lunar também experiência movimentos de maré, os quais têm uma amplitude de cerca de 10 centímetros ao longo de 27 dias, e dois componentes: um fixo, devido à Terra, porque o satélite está em rotação sincronizada, e um variável, devido ao Sol. O componente induzido pela Terra surge a partir da libração, uma consequência da excentricidade orbital da Lua; se a órbita do satélite fosse perfeitamente circular, só haveria marés solares. A libração também muda o ângulo a partir do qual a Lua é vista, permitindo que cerca de 59% da superfície possa ser observada a partir da Terra (embora apenas metade, em dado momento). Os efeitos cumulativos do estresse provocado pelos movimentos de maré produzem sismos lunares, os quais são muito menos comuns e menos intensos do que os sismos terrestres embora, por outro lado, possam durar até uma hora devido à ausência de água para amortecer as vibrações sísmicas.
Eclipses
O eclipse solar de 1999.
Os eclipses ocorrem apenas quando o Sol, a Terra e a Lua se encontram alinhados. Os eclipses solares ocorrem durante a lua nova, quando a Lua se encontra entre o Sol e a Terra. Por outro lado, os eclipses lunares ocorrem durante a lua cheia, quando a Terra se encontra entre o Sol e a Lua. O tamanho aparente da Lua é aproximadamente o mesmo do Sol, quando ambos são observados a aproximadamente meio ângulo de largura. O Sol é muito maior do que a Lua, mas é precisamente esse maior afastamento que por coincidência faz com que tenha o mesmo tamanho aparente da Lua, muito mais próxima e mais pequena. As variações entre o tamanho aparente, devido às órbitas não circulares, são também muito coincidentes, embora ocorram em diferentes ciclos. Isto faz com que seja possível ocorrerem eclipses totais (em que a Lua aparenta ser maior do que o Sol) e eclipses solares anulares (em que a Lua aparenta ser menor do que o Sol). Durante um eclipse total, a Lua cobre por completo o disco solar e a coroa solar torna-se visível a olho nu. Uma vez que a distância entre a Lua e a Terra aumenta muito devagar ao longo do tempo, o diâmetro angular da Lua também está a diminuir. Isto significa que há centenas de milhões de anos a Lua cobriu por completo o Sol em eclipses solares, e que não era possível ocorrerem eclipses anulares. Da mesma forma, daqui a 600 milhões de anos, a Lua deixará de cobrir o Sol por completo, e só ocorrerão eclipses anulares.
Uma vez que a órbita da Lua em volta da Terra tem uma inclinação de cerca de 5º em relação à órbita da Terra em volta do Sol, os eclipses não ocorrem em todas as luas novas e cheias. Para ocorrer um eclipse, a Lua deve estar perto da intersecção dos dois planos orbitais. O intervalo de tempo e recorrência dos eclipses é descrito no ciclo de Saros, que tem uma duração de aproximadamente dezoito anos.
Uma vez que a Lua bloqueia permanentemente a nossa visão de uma área circular do céu com meio grau de diâmetro, o fenómeno relacionado de ocultação ocorre quando uma estrela ou planeta brilhante passam perto da Lua e são ocultados. Desta forma, um eclipse solar é uma ocultação do Sol. Como a Lua se encontra relativamente perto da Terra, a ocultação de estrelas individuais não é visível de todos os pontos do planeta, nem ao mesmo tempo. Devido à precessão da órbita lunar, em cada ano são ocultadas estrelas diferentes.
VEJA TAMBÉM:
◙ LUA / MOON (Parte 1 de 3),
◙ LUA / MOON (Parte 2 de 3).
* * * * *