31 janeiro 2015

POSTAGEM n° 300

Trecentésima Postagem do Blog

Abaixo o estereograma do selo comemorativo da postagem n° 300 que eu fiz no Power Point, isso mesmo, dá para fazer estereogramas usando recursos mistos do Power Point e do aplicativo Paint, sem usar softwares especiais específicos para fazer estereogramas. Quase ninguém sabe dessa possibilidade, mas para conseguir tem de ter bastante noções de desenho (técnico e artístico) e noções espaciais.

Estereograma do Selo Comemorativo da "Postagem n° 300 do Blog do Furnari", usando o Ícone do Blog como inspiração (clique na imagem para ampliar e veja o selo em 3D). Fique com os olhos perpendiculares à imagem. Junte as duas figuras do selo no centro "cruzando os olhos" para visualizar. O fundo escuro serve para facilitar a visualização.

Para comemorar a Postagem n° 300, segue uma listagem de 10 links de posts interessantes do blog.

Lista Comemorativa:


ESTROMATÓLITOS Rochas Fósseis (Parte 1)

Estromatólito

Estromatólito: (/strɵˈmætoʊlaɪts/; from Greek στρώμα, strōma, mattress, bed, stratum, and λίθος, lithos, rock).

Estromatólito pode ser definido como uma rocha fóssil formada por atividades de microrganismos em ambientes aquáticos, que, quando acumulados no fundo de mares rasos, formam uma espécie de recife. Porém, a definição exata de estromatólito ainda é discutida podendo, por exemplo, excluir estruturas como oncólitos e trombólitos da lista dos estromatólitos.

A Origem da Vida: Estromatólitos (Vídeo em Inglês).

Nosso ancestral comum (Life Origin).

Há mais de 20 anos é conhecida a presença de estromatólitos no chamado sílex de Strelley Pool, uma formação rochosa que fica na Austrália e que data do início do Mesoarqueano, ou seja, cerca de 3,5 bilhões de anos atrás. Por serem fósseis tão antigos, pensa-se que sejam testemunha dos primeiros organismos a realizar a fotossíntese oxigênica, responsáveis pelo gás oxigênio que surgiu no planeta há cerca de 3,5 bilhões de anos. No Brasil, os fósseis mais antigos ocorrem no Quadrilátero Ferrífero e têm idade entre 2,1 e 2,4 bilhões de anos, mas o principal registro no país está nos terrenos mesoproterozoicos e neoproterozoicos dos estados de Goiás, Minas Gerais, Paraná, Bahia e Distrito Federal.

Não somente de sílex podem se formar os estromatólitos: compõem-se também estes de carbonatos (calcita e dolomita). São formados a partir de uma sucessão de estágios, partindo de esteira microbiana, estromatólito estratiforme, para finalmente consolidar uma rocha. Os principais microorganismos formadores das esteiras estromatolíticas são as cianobactérias.

Modernos estromatólitos em Shark Bay, Western Australia.

Stromatolites in limestone (Mesoproterozoic - about 1.45 billion years ago), Glacier National Park, Montana, USA.

Classificação

Um dos problemas mais críticos e controversos referentes aos estromatólitos é a classificação e descrição taxonômica. Existem, de maneira geral, dois pensamentos para formular a classificação: paleontólogos que dão ênfase ao ambiente deposicional e classificam apenas as microestruturas, isto é, levam em consideração o gênero e a espécie de microrganismos dos estromatólitos; e outros paleontólogos que sugerem uma classificação quanto a morfologia, já que esses fósseis são colônias de microrganismos e não "fósseis individuais", propondo classificação em categorias que não seguem a nomenclatura biológica. Um exemplo dessa discussão é que não foi possível chegar a um consenso pelo Projeto Internacional de Correlação Geológica 261 intitulado "Stromatolite" que reuniu cerca de 200 especialistas do mundo, inclusive do Brasil, para discutir e resolver a questão.

Aplicação e Importância

Os estromatólitos são as únicas evidências de vida do Arqueano. Alguns deles encontrados em rochas de 3,5 bilhões de anos na Austrália e África do Sul constituem uma das mais antigas evidências de vida conhecidas. Existem ainda cientistas que até "procuram" estromatólitos visando provar a vida pretérita em Marte. Além disso, suas estruturas fornecem dados astronômicos e geofísicos quanto ao ambiente do passado e formam paisagens que podem ser usadas como atração turística pelo ecoturismo.

Veja também: Estromatólitos (Parte 2)

30 janeiro 2015

EVOLUTION OF SPEED (Recommended)

THIS IS THE EVOLUTION OF LAND SPEED.


The Blue Flame 1970: 1.014,52 km/h.


Thrust SSC 1997: Mach 1.

Sound speed:

Mach 1 = 340,29 m/s = 1.225,044 km/h.


Mach.

No comments, just watch the 3 videos!



Evolution of Speed 1.


Evolution of Speed 2.


Thrust SSC.

26 janeiro 2015

ESTEREOGRAMA / STEREOGRAM

Estereograma

Um estereograma é uma técnica de ilusão de óptica, onde a partir de duas imagens bidimensionais complementares, é possível visualizar uma imagem tridimensional. Basicamente deve-se ver cada uma das duas imagens bidimensionais com um dos olhos, gerando-se a ilusão da tridimensionalidade. Este efeito é possível graças ao efeito Estereoscópico onde para a imagem captada por cada olho, o cérebro "funde" as imagens dando efeitos tridimensionais à visão.

Há anos, os estereogramas têm sido feitos sobrepondo-se fotografias com tomadas de ângulos ligeiramente distintos. Atualmente voltaram à fama, graças aos RDS (Random Dot Stereogram), criados com softwares específicos.

Para conseguir enxergar um estereograma, o principal é conhecer o resultado esperado. A ideia é desfocar a vista da imagem, de maneira que ambas as perspectivas sejam captadas. Alguns recomendam olhar o infinito, ou seja, fitar a vista num objeto distante e, sem desfocar, voltar a olhar a imagem. Outros preferem fitar a visão em um dedo sobre a imagem e lentamente retirá-lo, ou observar o reflexo da imagem num vidro, ou olhar a imagem bem de perto e, mantendo o foco, ir afastando a cabeça, de forma que o foco saia do papel até encontrar o ponto ideal. Depende de cada pessoa e sua condição visual. Alguns estereogramas já trazem um auxílio, como dois pontos, onde você foca a sua visão de forma que os 2 pontos se transformem em 3, então a imagem pretendida aparecerá.

Estereogramas


Stereogram image.


Formula 1 stereogram.


Photography stereogram.


Pyramids stereogram.


Fractal stereogram.


Sun stereogram.


Vulcan stereogram.



*    *    *

25 janeiro 2015

TESSERACT (Estereograma)

A quarta Dimensão


1) Partimos de um ponto: o projetamos e temos uma reta.

2) Partindo de uma reta: projetando-a perpendicularmente e temos um quadrado.

3) De um quadrado: projetando-o ortogonalmente 90° e teremos um cubo.

4) Projetando um cubo também perpendicularmente: não conseguimos visualizar, mas teremos um tesseract.


Visualize o Tesseract abaixo, e se não conseguimos visualizá-lo em 4D, podemos ao menos visualizá-lo em 3D:


Estereograma representando um tesseract. É necessário "cruzar os olhos" juntando as duas imagens no centro para ver em 3 dimensões (clique na imagem para ampliar).



*     *     *

MAPA 3D DO UNIVERSO

Mapa 3D do universo

É uma tarefa de magnitude quase inimaginável: fazer um mapa em três dimensões das bilhões de galáxias que formam o universo.

Cientistas planejam fazer isso usando um novo telescópio chamado Square Kilometre Array (SKA), nome dado graças à área combinada ocupada pelas antenas de satélite usadas pelo projeto na Austrália e na África do Sul.

Bilhões de Galáxias compõem nosso Universo.

Mas o SKA não monitora emissões de luz como os telescópios convencionais. Ele reúne a fraca radiação emitida pelo hidrogênio, o elemento químico mais comum do universo.

É por isso que cientistas dizem que o telescópio será capaz de "enxergar" qualquer local do cosmos, fornecendo um retrato da forma do universo que nunca foi feito antes.

"Você poderia percorrê-lo e ver as galáxias conforme passa por elas, entender como o gás é distribuído em seus interiores e aprender como se formam as estrelas, sobre o efeito de buracos negros e entender como funciona a energia e a matéria escuras", disse o astrofísico Matt Jarvis, da Universidade de Oxford, na Grã-Betanha, ao programa Today, da BBC.

Leis da física

Especialistas dizem que o mapa também os ajudará a testar as leis fundamentais da física, inclusive modelos como a Teoria da Relatividade de Einstein ou até mesmo a buscar vida extraterrestre.

A vantagem do SKA sobre telescópios convencionais é a velocidade com que ele rastreia os céus.

Isso permite que cientistas monitorem as datas de emissões de radiação, o que fornece não apenas a posição de um corpo celeste, mas também sua distância.

A desvantagem é que ele gera uma imagem com resolução bem menor do que as produzidas com a técnica baseada nas emissões de luz.

"Ao observar um bilhão de galáxias em duas datas diferentes, com dez anos de diferença, o SKA poderá medir diretamente a expansão do universo", diz Hans-Rainer Klöckner, do Instituto Max-Planck, na Alemanha.

Como a expansão cósmica ocorre numa escala de tempo bem mais lenta se comparada com o tempo de duração de uma vida humana, ser capaz de medi-la seria considerado um "grande feito técnico", diz Klöckner.

O projeto internacional deve ser completado em 2030, com a primeira fase a ser concluída em 2023.

Fonte: BBC Brasil.

23 janeiro 2015

CALCULE π NA PRÁTICA

Matemática básica aplicada na prática

Pi, você sabe, é o número irracional mais conhecido da história. No mundo antigo babilônios e egípcios já sabiam que o Pi era uma constante e que valia um pouco mais do que 3.

Encontrar o melhor valor de Pi tornou-se uma febre entre os geômetras ao longo da história! Em cálculos simples, é comum aproximarmos o Pi com duas casas decimais, ou seja, π = 3,14. O Pi, com cem casas decimais, é:

π = 3,141592653 5897932384 6264338327 9502884197 1693993751 0582097494 4592307816 4062862089 9862803482 5342117067

Para calcular PI empiricamente, pode-se tentar medi-lo. É simples. Mas divertido. Veja a ilustração abaixo e siga os passos:

Ilustração de como calcular π empiricamente usando neste caso uma lata metálica cilíndrica (clique na imagem para ampliar).

1. Consiga algo de perfil circular, um recipiente cilíndrico (pode ser uma lata vazia, um prato, um CD velho, etc..);

2. Enrole cuidadosamente um barbante ao redor da circunferência do objeto redondo que conseguiu (linha tracejada vermelha). Deixe o barbante bem justo e procure dar a volta num único plano. Na ilustração, na latinha, a borda da tampa serviu de guia para o barbante não escorregar, saindo do plano ideal, o que provocaria erro grosseiro na medida. É importante ter capricho;

3. Corte o barbante com cuidado, exatamente no comprimento da volta do objeto. Uma boa dica é você dar a volta no objeto, segurar o barbante, e pedir para alguém marcar com uma caneta hidrocor o ponto exato do corte;

4. Estique o barbante e meça o seu comprimento p com uma régua. Esse é o valor do perímetro p da circunferência (destacado em verde na ilustração);

5. Agora meça com cuidado o diâmetro d da circunferência do objeto (destacado em azul na ilustração). Cuide para que a medida seja feita com a régua passando bem pelo centro da circunferência;

6. Numa calculadora, divida o p (medido) por d (também medido). Deve dar um pouco maior do que 3. Algo em torno de 3,1 ou 3,2. Se for feito com bastante cuidado, mais próximo de 3,14;

E, só para lembrar, como o diâmetro d mede o dobro do raio r da circunferência, é comum escrevermos p/d = π, ou seja, L = π.d = π.2r que dá p = 2πr. O comprimento da circunferência mede p = 2πr. Expressão também bastante conhecida.

21 janeiro 2015

AUTODETERMINAÇÃO (Tertúlia Conscienciológica n° 1398)

Autodeterminação

Autodeterminação.

Vídeo: "AUTODETERMINAÇÃO" Tertúlia Conscienciológica n° 1398 com Waldo Vieira (tempo aproximado de 2 horas).

Vídeo: Tertúlia 1398 - AUTODETERMINAÇÃO.

Ou acesse o link: AUTODETERMINAÇÃO - Waldo Vieira.

A Tertúlia Conscienciológica do CEAEC é o curso de longo curso circular ministrado pelo Prof. Waldo Vieira no qual são apresentados e debatidos os verbetes em construção da Enciclopédia da Conscienciologia.

AUTODETERMINAÇÃO

Definologia. A autodeterminação é o ato ou efeito de a consciência determinar, decidir,
deliberar, prescrever, resolver, afirmar e definir alguma ação pessoal.

Tematologia. Tema central neutro.

Etimologia. O elemento de composição auto procede do idioma Grego, autós, “eu mesmo;
por si próprio”. A palavra determinação provém do idioma Latim, determinatio, “limite; extrema; demarcação; fim; extremidade”. Surgiu no Século XIV.

Sinonimologia: 01. Autodeliberação. 02. Autorresolução. 03. Autodefinição. 04. Autodecisão. 05. Autoafirmação. 06. Autoposicionamento. 07. Autexpressão. 08. Autoprescrição. 09. Autorreação. 10. Autonomia; autossustentabilidade.

Cognatologia. Eis, na ordem alfabética, 40 cognatos derivados do vocábulo determinação:
antideterminação; autodeterminação; autodeterminismo; autodeterminologia; determinabilidade; determinada; determinado; determinador; determinadora; determinante; determinar; determinativa; determinativo; determinável; determinismo; determinista; determinística; determinístico; determinologia; heterodeterminação; indeterminabilidade; indeterminação; indeterminada; indeterminado; indeterminador; indeterminadora; indeterminar; indeterminável; indeterminismo; indeterminista; indeterminística; indeterminístico; predeterminação; predeterminada; predeterminado; predeterminante; predeterminar; sobredeterminação; sobredeterminada; sobredeterminado.

Neologia. As duas expressões compostas autodeterminação cosmoética e autodeterminação anticosmoética são neologismos técnicos da Autodeterminologia.

Antonimologia: 01. Heterodeterminação. 02. Autovacilação. 03. Auto-hesitação. 04.
Autotitubeio. 05. Autoinsegurança. 06. Autoindecisão. 07. Autoirresolução. 08. Autalienação. 09. Autodesorientação. 10. Heteronomia.

Estrangeirismologia: o loc interno; a strength of purpose; o strong profile.

Atributologia: predomínio das faculdades mentais, notadamente do autodiscernimento
quanto aos posicionamentos pessoais.

20 janeiro 2015

A ORIGEM COMPLETA DO PLANETA TERRA / EARTH: THE MAKING OF A PLANET

Earth: The Making of a Planet

Imagine cameras have been around since the creation of Earth to record every major event.

Take a photographic journey thorough time from the violent birth of our planet four and a half billion years ago, through ice-ages, massive volcanic eruptions and the dinosaurs' reign to the first humans. For the first time, see the incredible story of our planet unfold in one single, seamless camera move.

Total playing time: 1 hour 34 minutes 23 seconds.

Formation of the Solar System / Formação do Sistema Solar.

Video: EARTH - Making of a planet (dublado em português) [low definition / baixa definição].

For high definition Click here / Para alta definição clique aqui

A Origem Completa do Planeta Terra

Imagine câmeras têm sido em torno da Terra desde a sua criação para registrar todos os eventos importantes.

Faça uma viagem completa através do tempo, desde o violento nascimento do nosso planeta há quatro e meio bilhões de anos atrás, através de gelo idades de gelo, grandes erupções vulcânicas e o reinado dos dinossauros, até os primeiros seres humanos. Pela primeira vez veja a incrível história do nosso planeta se desdobrar em uma única filmagem sem emendas.

Tempo de duração: 1 hora 34 minutos 23 segundos.

See more / Veja mais: http://natgeotv.com.au/tv/earth-making-of-a-planet/

18 janeiro 2015

ROCKET'S EXPLOSIONS / EXPLOSÕES DE FOGUETES

Explosões de foguetes

Mesmo com toda a tecnologia e controle de qualidade, em um ambiente tão hostil como o espaço, e envolvendo máquinas tão complexas, é de se esperar que ocorram erros.

Muitos acidentes ficaram para a história da exploração espacial. Alguns deles provocaram baixas entre os astronautas e cosmonautas.

Explosão do foguete Antares em 28 de outubro de 2014 durante lançamento.

Vídeo com explosões de foguetes desde a década de 1940 até a década de 2010 (duração de 31 minutos e 50 segundos).

Em 24 de outubro de 1960 uma explosão na plataforma de lançamento matou dezenas de cientistas e técnicos da URSS.

No dia 23 de março de 1961 (poucos dias antes do voo pioneiro de Gagarin ao espaço) irrompe um incêndio no interior de uma cápsula Vostok. O cosmonauta que realizava treinamento a bordo da nave, Valentin Bondarenko, não tem tempo de escapar e sofre queimaduras graves, vindo a falecer num hospital poucas horas depois. Isso somente viria a ser admitido oficialmente pela URSS em 1985.

Em 1966 a nave Gemini VIII ficou desgovernada no espaço, mas os astronautas conseguiram consertar a nave e regressar a Terra.

Passado um ano, os astronautas Virgil "Gus" Ivan Grissom, Edward Higgins White II e Roger Bruce Chaffee, do Projeto Apollo, morreram no solo em um incêndio dentro da cabine de comando, no que ficou conhecido como "Apollo 1".

Em abril de 1967, o cosmonauta Vladimir Komarov teve uma variedade de problemas técnicos com a nave Soyuz 1, e acabou morrendo no pouso, no acidente que atrasou o programa espacial soviético em 18 meses.

Em 21 de fevereiro de 1969 um foguete do programa lunar soviético caiu, logo após o lançamento, sobre uma cidade matando 350 pessoas.

Em 1970, devido a um acidente grave, ocasionado por uma faísca de um curto circuito nos tanques ao serem agitados os gases criogênicos, procedimento padrão da Missão, a Apollo 13 ficou seriamente avariada em seu caminho em direção à Lua. Isto impossibilitou seu pouso na Lua e resultou em um retorno tenso e espetacular à Terra, com um mínimo de oxigênio remanescente, no mais conhecido acidente espacial da história. O episódio terminou, contudo, de forma satisfatória para os seus tripulantes.

A frase que marcou o evento foi: OK, Houston, we have a problem here. ("Houston, nós temos um problema aqui").

Em 30 de junho de 1971 a despressurização da nave Soyuz matou os cosmonautas Georgy Dobrovolsky, Vladislav Volkov e Viktor Patsayev, que haviam cumprido uma missão de 24 dias em órbita.

Em 28 de janeiro de 1986 um defeito no anel de borracha que vedava os foguetes à combustível sólido causou a explosão do Ônibus Espacial Challenger, matando todos seus ocupantes, inclusive a professora Christa MacAulife, a primeira civil a participar de um voo espacial.

Mais recentemente, em 2003, o Ônibus Espacial Columbia explodiu nos procedimentos finais de pouso, matando todos os seus tripulantes.

Em 22 de agosto de 2003, uma explosão destruiu o Veículo Lançador de Satélite (VLS-1), na base brasileira de Alcântara, no Estado do Maranhão. A causa do acidente de Alcântara, segundo o major brigadeiro Tiago Ribeiro, diretor do Centro Técnico Aeroespacial (CTA), em São José dos Campos, São Paulo, foi a ignição espontânea de um dos quatro motores do VLS-1. A explosão destruiu os equipamentos e matou 21 pessoas da equipe Centro de Lançamento de Alcântara (CLA).

Para saber mais veja a postagem: spaceflight accidents and incidents

16 janeiro 2015

SPACEFLIGHT ACCIDENTS AND INCIDENTS / ACIDENTES E INCIDENTES DE VOOS ESPACIAIS

List of spaceflight-related accidents and incidents
This article lists verifiable spaceflight-related accidents and incidents resulting in fatality or near-fatality during flight or training for manned space missions, and testing, assembly, preparation or flight of manned and unmanned spacecraft. Not included are accidents or incidents associated with intercontinental ballistic missile (ICBM) tests, unmanned space flights not resulting in fatality or serious injury, orSoviet or German rocket-powered aircraft projects of World War II. Also not included are alleged unreported Soviet space accidents, which are considered fringe theories by a majority of historians.
There have been a number of such incidents in the history of spaceflight, in particular 18 astronaut and cosmonaut fatalities, as of 2013.[1][2] There have been some astronaut fatalities during training for space missions, such as the Apollo 1 launch pad fire which killed all three crew members. There have also been some non-astronaut fatalities during spaceflight-related activities.

Rocket failure.
Astronaut fatalities
(In the statistics below, "astronaut" is applied to all space travellers to avoid the use of "astronaut/cosmonaut".)
Astronaut fatalities during spaceflight
The history of space exploration has had a number of incidents that resulted in the deaths of the astronauts during a space mission. As of 2013, in-flight accidents have killed 18 astronauts, in four separate incidents.[2]
NASA astronauts who have lost their lives in the line of duty are memorialized at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Merritt Island, Florida. Cosmonauts who have died in the line of duty under the auspices of the Soviet Union were generally honored by burial at the Kremlin Wall Necropolis in Moscow. It is unknown whether this remains tradition for Russia, since the Kremlin Wall Necropolis was largely a Communist honor and no cosmonauts have died in action since the Soviet Union broke up.
There have been four fatal in-flight accidents on missions which were considered spaceflights under the internationally accepted definition of the term, plus one on the ground during rehearsal of a planned flight. In each case all crew were killed. To date, no individual member of a multi-member crew has died during a mission or rehearsal.


There has also been an accident on a flight that was considered a spaceflight by those involved but not under the internationally accepted definition:



Astronaut fatalities during spaceflight training
In addition to accidents during spaceflights, 11 astronauts have died during training.



Non-fatal incidents during spaceflight
Apart from actual disasters, a number of missions resulted in some very near misses and also some training accidents that nearly resulted in deaths. In-flight near misses have included various reentry mishaps (in particular on Soyuz 5), the sinking of the Mercury 4 capsule, and the Voskhod 2 crew spending a night in dense forest surrounded by wolves.
·        12 April 1961: separation failure: During the flight of Vostok 1, after retrofire, the Vostok service module unexpectedly remained attached to the reentry module by a bundle of wires. The two halves of the craft were supposed to separate ten seconds after retrofire. But they did not separate until 10 minutes after retrofire, when the wire bundle finally burned through. The spacecraft had gone through wild gyrations at the beginning of reentry, before the wires burned through and the reentry module settled into the proper reentry attitude.[32]
·        21 July 1961: landing capsule sank in water: After Liberty Bell 7 splashed down in the Atlantic, the hatch malfunctioned and blew, filling the capsule with water and almost drowning Gus Grissom, who managed to escape before it sank. Grissom then had to deal with a spacesuit that was rapidly filling with water, but managed to get into the helicopter's retrieval collar and was lifted to safety.[33] The spacecraft was recovered in 1999, having settled 300 nmi (560 km; 350 mi) southeast of Cape Canaveral in 15,000 ft (4,600 m) of seawater. An unexploded SOFAR bomb designed for sound fixing and ranging in case the craft sank had failed, and had to be dealt with when it was recovered in from the ocean floor in 1999.[34]
·        18 March 1965: spacesuit or airlock design fault: Voskhod 2 featured the world's first spacewalk, by Alexei Leonov. After his twelve minutes outside, Leonov's spacesuit had inflated in the vacuum to the point where he could not reenter the airlock. He opened a valve to allow some of the suit's pressure to bleed off, and was barely able to get back inside the capsule after suffering side effects of the bends. Because the spacecraft was so cramped, the crew could not keep to their reentry schedule and landed 386 km off course in deep forest. They had to spend a night in their capsule due to the danger of bears and wolves.
·        12 December 1965: engine shutdown at launch: Gemini 6A the first on-pad shutdown in the US Manned Program. Gemini 7 orbiting 185 miles directly over Missile Row witnessed the event and reported they could clearly see the momentary exhaust plume before shutdown.[35]
·        17 March 1966: equipment failure: Gemini 8: A maneuvering thruster refused to shut down and put their capsule into an uncontrolled spin.[36]
·        18 January 1969: separation failure: Soyuz 5 had a harrowing reentry and landing when the capsule's service module initially refused to separate, causing the spacecraft to begin reentry faced the wrong way. The service module broke away before the capsule would have been destroyed, and so it made a rough but survivable landing far off course in the Ural mountains.
·        1969 Nov 14: Struck twice by lightning during launch: Astronauts Pete Conrad, Alan Bean, and Dick Gordon experienced two lightning strikes during the launch of Apollo 12. The first strike, at 36 seconds after liftoff, knocked the three fuel cells offline and the craft switched to battery power automatically. The second strike, at 52 seconds after liftoff, knocked the onboard guidance platform offline. Four temperature sensors on the outside of the Lunar Module were burnt out and four measuring devices in the reaction control system failed temporarily. Fuel cell power was restored about four minutes later. The astronauts spent additional time in earth orbit to make sure the spacecraft was functional before firing their S-IVB third stage engine and departing for the moon.[37][38]
·        1969 Nov 24: Struck by camera during splashdown: Astronaut Alan Bean was struck above the right eyebrow by a 16mm movie camera when the Apollo 12 spacecraftsplashed down in the ocean. The camera broke free from its stowage place. Bean suffered a concussion[citation needed], and a 1.25 cm cut above the eyebrow that required stitches.[39]
·        1970 Apr 11: Premature engine shutdown: During the launch of Apollo 13, its Saturn V second stage suffered a premature shut down on one of its five engines. The center engine shut down two minutes early. The remaining engines on the second and third stages were burned a total of 34 seconds longer. It was later determined that the shut down was caused by pogo oscillation of the engine. Had the pogo oscillation continued, it could have torn the Saturn V apart.[40][41][42]
·        13 April 1970: equipment failure: In the most celebrated "near miss," the Apollo 13 crew came home safely after a violent rupture of a liquid oxygen tank[43] deprived the Service Module of its ability to produce electrical power, crippling their spacecraft en route to the moon. They survived the loss of use of their command ship by relying on the Lunar Module as a "life boat" to provide life support and power for the trip home.[44]
·        1971 Aug 7: One of three main parachutes failed: During descent, the three main parachutes of Apollo 15 opened successfully. However, when the remaining reaction control system fuel was jettisoned, one parachute was damaged by the discarded fuel causing it to collapse. The Apollo 15 and its crew still splashed down safely, at a slightly higher than normal velocity, on the two remaining main parachutes. If a second parachute had failed, the spacecraft would probably have been crushed on impact with the ocean, according to a NASA official.[45]
·        5 April 1975: separation failure: The Soyuz 18a mission nearly ended in disaster when the rocket suffered a second-stage separation failure during launch. This also interrupted the craft's attitude, causing the vehicle to accelerate towards the Earth and triggering an emergency reentry sequence. Due to the downward acceleration, the crew experienced an acceleration of 21.3 g rather than the nominal 15 g for an abort. Upon landing, the vehicle rolled down a hill and stopped just short of a high cliff. The crew survived, but Lazarev, the mission commander, suffered internal injuries due to the severe G-forces and was never able to fly again.
·        24 July 1975: gas poisoning on board: During final descent and parachute deployment for the Apollo Soyuz Test Project Command Module, the U.S. crew were exposed to 300 µL/L of toxic nitrogen tetroxide gas (Reaction Control System oxidizer) venting from the spacecraft and reentering a cabin air intake. A switch was left in the wrong position. 400µL/L is fatal. Vance Brand's lost consciousness for a short time. The crew members suffered from burning sensations of their eyes, faces, noses, throats and lungs. Thomas Stafford quickly broke out emergency oxygen masks and put one on Brand and gave one to Deke Slayton. The crew were exposed to the toxic gas from 24,000 ft (7.3 km) down to landing. About an hour after landing the crew developed chemical-induced pneumonia and their lungs had edema. They experienced shortness of breath and were hospitalized in Hawaii. The crew spent two weeks in the hospital. By July 30, their chest X-rays appeared to return to normal except for Slayton; he was diagnosed with a benign lesion unrelated to the gas exposure which was later removed.[46]
·        16 October 1976: landing capsule sank in water: The Soyuz 23 capsule broke through the surface of a frozen lake and was dragged underwater by its parachute. The crew was saved after a very difficult rescue operation.[47]
·        12 April 1979: engine malfunction: Soyuz 33 was the ninth mission to the Salyut 6 orbiting facility, but an engine failure forced the mission to be aborted, and the crew had to return to earth before docking with the station. It was the first-ever failure of a Soyuz engine during orbital operations. The two-man crew, commander Nikolai Rukavishnikovand Bulgarian cosmonaut Georgi Ivanov, suffered a steep ballistic re-entry, but were safely recovered. The original intention of the mission had been to visit the orbiting crew for about a week and leave a fresh vehicle for the station crew to return to earth in. The mission failure meant that the orbiting Salyut 6 crew lacked a reliable return vehicle as their Soyuz had the same suspect engine as Soyuz 33. A subsequent manned flight was canceled and a vacant craft with a redesigned engine was sent for the crew to use.
·        1981 Apr 12: STS-1: unexpectedly high SRB ignition shock wave overpressure reached design limits of orbiter structure: During the launch of STS-1, the Solid Rocket Booster ignition shock wave overpressure was four times greater than expected (2.0 psi measured vs 0.5 psi predicted). Some of the aft structures on Space Shuttle Columbiareached their design limits (2.0 psi) from the overpressure. The overpressure bent four struts that supported two RCS fuel tanks in the nose of Columbia and the orbiter's locked body flap was pushed up and down 6 inches by the shock wave. John Young and Robert Crippen in the crew cabin received a 3 g jolt from the shock wave. An improved water spray shock wave damping system had to be installed on the launch pad prior to the STS-2 launch.[48][49][50][51]
·        26 September 1983: fire in launch vehicle: A fuel spillage before the planned liftoff caused Soyuz T-10-1 to be engulfed in flames. The crew was narrowly saved by the activation of their launch escape system, with the rocket exploding two seconds later.
·        1983 Dec 8: leaked hydrazine fuel fire and explosion: In the last two minutes of the STS-9 mission, during Space Shuttle Columbia's final approach to the Edwards AFB runway, hydrazine fuel leaked onto hot surfaces of two of the three onboard auxiliary power units (APU) in the aft compartment of the shuttle and caught fire. About 15 minutes after landing, hydrazine fuel trapped in the APU control valves exploded, destroying the valves in both APUs. The fire also damaged nearby wiring. The fire stopped when the supply of leaked fuel was exhausted. All of this was discovered the next day when technicians removed an access panel and discovered the area blackened and scorched. It is believed that hydrazine leaked in orbit and froze, stopping the leak. After returning, the leak restarted and ignited when combined with oxygen from the atmosphere. There were no injuries during the incident.[52][53]
·        29 July 1985: STS-51-F: Space Shuttle in-flight engine failure: Five minutes, 45 seconds into ascent, one of three main engines aboard Challenger shut down prematurely due to a spurious high temperature reading. At about the same time, a second main engine almost shut down from a similar problem, but this was observed and inhibited by a fast acting flight controller. The failed SSME resulted in an Abort To Orbit (ATO) trajectory, whereby the shuttle achieves a lower than planned orbital altitude. Had the second engine failed within about 20 seconds of the first, a Transatlantic Landing (TAL) abort might have been necessary. No bailout option existed until after mission STS-51-L, theChallenger disaster. But even with that option, a bailout (a "contingency abort") would never be considered when an "intact abort" option exists, and after five minutes of normal flight it would always exist unless a serious flight control failure or some other major problem beyond engine shutdown occurred.[54][55]
·        6 September 1988: sensor failure: At the end of Mir EP-3, Soviet cosmonaut Vladimir Lyakhov and Afghan cosmonaut Abdul Ahad Mohmand undocked from Mir in the spacecraft Soyuz TM-5. During descent they suffered a computer software problem combined with a sensor problem. The deorbit engine on the TM-5 spacecraft which was to propel them into atmospheric reentry, did not behave as expected. During an attempted burn, the computer shut off the engines prematurely, believing the spacecraft was out of alignment.[56] Lyakhov determined that they were not, in fact, out of alignment, and asserted that the problem was caused by conflicting signals picked up by the alignment sensors caused by solar glare.[56] With the problem apparently solved, two orbits later he restarted to deorbit engines. But the engines shut off again. The flight director decided that they would have to remain in orbit an extra day (a full revolution of the Earth), so they could determine what the problem was. During this time it was realised that during the second attempted engine burn, the computer had tried to execute the program which was used to dock with Mir several months earlier during EP-2.[56]After reprogramming the computer, the next attempt was successful, and the crew safely landed on 7 September.[57]
·        6 December 1988: STS-27: thermal tile damage: Space Shuttle Atlantis' Thermal Protection System tiles sustained unusually severe damage during this flight. Ablative insulating material from the right-hand solid rocket booster nose cap had hit the orbiter about 85 seconds into the flight, as seen in footage of the ascent. The crew made an inspection of the shuttle's impacted starboard side using the shuttle's Canadarm robot arm, but the limited resolution and range of the cameras made it impossible to determine the full extent of the tile damage. Following reentry, more than 700 tiles were found to be damaged including one that was missing entirely. STS-27 was the most heavily damaged shuttle to return to earth safely.
·        8 April 1991: STS-37: spacesuit puncture: During an extravehicular activity on STS-37, a small rod (palm bar) in a glove of EV2 astronaut Jay Apt's extravehicular mobility unitpunctured the suit. Somehow, the astronaut's hand conformed to the puncture and sealed it, preventing any detectable depressurization. During post-flight debriefings, Apt said after the second EVA, when he removed the gloves, his right hand index finger had an abrasion behind the knuckle. A postflight inspection of the right hand glove found the palm bar of the glove penetrating a restraint and glove bladder into the index finger side of the glove. NASA found air leakage with the bar in place was 3.8 sccm vs a specification of 8.0 sccm. They said if the bar had come out of the hole, the leak still would not have been great enough to activate the secondary oxygen pack. The suit would, however, have shown a high oxygen rate indication.[58]
·        1993 Sep 12: STS-51: explosive release device punctures cargo bay bulkhead: Aboard Space Shuttle Discovery, during the STS-51 mission, while releasing the Advanced Communications Technology Satellite from the payload bay, both the primary and backup explosive release devices detonated. Only the primary device was supposed to have detonated. Large metal bands holding the satellite in place were ripped away, causing flying debris. The debris punctured the orbiter's payload bay bulkhead leading to the main engine compartment, damaging wiring trays and payload bay thermal insulation blankets. The puncture in the bulkhead was 3 mm by 13 mm in size. The crew was uninjured and the damage was not great enough to endanger the shuttle. The satellite was undamaged.[59]
·        18 May 1995: eye injury from Mir exercise equipment: While exercising on the Mir EO-18/NASA 1/Soyuz TM-21 mission, astronaut Norman E. Thagard suffered an eye injury. He was using an exercise device, doing deep knee bends, with elastic straps. One of the straps slipped off of his foot, flew up, and hit him in the eye. Later, even a small amount of light caused pain in his eye. He said using the eye was, "like looking at the world through gauze." An ophthalmologist at Mission Control-Moscow prescribed steroid drops and the eye healed.[60]
·        23 February 1997: fire on board: There was a fire on board the Mir space station when a lithium perchlorate canister used to generate oxygen leaked. The fire was extinguished after about 90 seconds, but smoke did not clear for several minutes.
·        25 June 1997: collision in space: At Mir, during a re-docking test with the Progress M-34 cargo freighter, the Progress freighter collided with the Spektr module and solar arrays of the Mir space station. This damaged the solar arrays and the collision punctured a hole in the Spektr module and the space station began depressurizing. The onboard crew of two Russians and one visiting NASA astronaut were able to close off the Spektr module from the rest of Mir after quickly cutting cables and hoses blocking the hatch closure.
·        23 July 1999: STS-93: main engine electrical short and hydrogen leak: Five seconds after liftoff, an electrical short knocked out controllers for two shuttle main engines. The engines automatically switched to their backup controllers. Had a further short shut down two engines, Columbia would have ditched in the ocean, although the crew could have possibly bailed out. Concurrently a pin came loose inside one engine and ruptured a cooling line, allowing a hydrogen fuel leak. This caused premature fuel exhaustion, but the vehicle safely achieved a slightly lower orbit. Had the failure propagated further, a risky transatlantic or RTLS abort would have been required.
·        2001 Feb 10: STS-98 / ISS - toxic ammonia leak during EVA: During EVA 1 on the STS-98 mission, NASA astronauts Robert L. Curbeam and Thomas D. Jones were connecting cooling lines on the International Space Station while working to install the Destiny Laboratory Module. A defective quick-disconnect valve allowed 5% of the ammonia cooling supply to escape into space. The escaping ammonia froze on the spacesuit of astronaut Curbeam as he struggled to close the valve. His helmet and suit were coated in toxic ammonia crystals an inch thick. Mission Control instructed Curbeam to remain outside for an entire orbit to allow the Sun to evaporate the frozen ammonia from his spacesuit. When they returned to the airlock, the astronauts pressurized, vented and then repressurized the air lock to purge any remaining toxic ammonia. After they removed their spacesuits, the crew wore oxygen masks for another 20 minutes to allow life-support systems in the airlock to further filter the air. No injuries resulted from the incident.[61]
·        3 May 2003: ballistic reentry, injured shoulder: The Soyuz TMA-1 capsule had a malfunction during its return to Earth from the ISS Expedition 6 mission and performed a ballistic reentry. The crew was subjected to about 8 to 9 G's during reentry. The capsule landed 500 km from the intended landing target. In addition, after landing the capsule was dragged about 15 meters by its parachute and ended up on its side in a hard landing. Astronaut Don Pettit injured his shoulder and was placed on a stretcher in a rescue helicopter and did not take part in post-landing ceremonies.[62][63][64]
·        2004 Sep 29: 29 unplanned rolls during ascent: While piloting SpaceShipOne on suborbital flight 16P, the first of two flights that won the X-Prize for exceeding 100 km in altitude, astronaut Mike Melvill experienced 29 unplanned rolls during and after powered ascent. The rolls began at 50 seconds into the engine burn. The burn was stopped 11 seconds early after burning a total of 76 seconds. After engine cutoff, the craft continued rolling while coasting to apogee. The roll was finally brought under control after apogee using the crafts reaction jets. SpaceShipOne landed safely and Mike Melvill was uninjured.[65][66]
·        19 April 2008: Soyuz TMA-11 suffered a reentry mishap similar to that suffered by Soyuz 5 in 1969. The service module failed to completely separate from the reentry vehicle and caused it to face the wrong way during the early portion of aerobraking. As with Soyuz 5, the service module eventually separated and the reentry vehicle completed a rough but survivable landing. Following the Russian news agency Interfax's report, this was widely reported as life-threatening[67][68] while NASA urged caution pending an investigation of the vehicle.[69] South Korean astronaut Yi So-Yeon was hospitalized after her return to South Korea due to injuries caused by the rough return voyage in the Soyuz TMA-11 spacecraft. The South Korean Science Ministry said that the astronaut had a minor injury to her neck muscles and had bruised her spinal column.[70]
·        16 July 2013: aborted spacewalk after water leak in suit: During EVA-23 of Expedition 36 to the International Space Station, European Space Agency astronaut Luca Parmitano reported that water was steadily leaking into his helmet. Flight controllers elected to abort the EVA immediately, and Parmitano made his way back to the Questairlock, followed by fellow astronaut Chris Cassidy. The airlock began repressurizing after a 1 hour and 32 minute spacewalk, and by this time Parmitano was having difficulty seeing, hearing, and speaking due to the amount of water in his suit. After repressurization, Expedition 36 commander Pavel Vinogradov and crewmembers Fyodor Yurchikhin and Karen Nyberg quickly removed Parmitano's helmet and soaked up the water with towels. Despite the incident, Parmitano was reported to be in good spirits and suffered no injury. The investigation into the cause of the leak is still ongoing as of July 18.[71][72][73]
Non-astronaut fatalities
Fatalities caused by rocket explosions



Other non-astronaut fatalities



Notes
1. Harwood (2005).
2. Musgrave, Larsen, Tommaso (2009), p. 143.
3. Coleman, Fred (1967-04-24). "Soviet Cosmonaut Dies in Spacecraft". The Owosso Argus-Press (Owosso, Michigan). American Press. p. 1.
4. "Google Maps - Soyuz 1 Crash Site - Memorial Monument Location". Retrieved2010-12-25.
5. "Google Maps - Soyuz 1 Crash Site - Memorial Monument Photo". Retrieved2010-12-25.
6. "Google Maps - Soyuz 1 Crash Site - Memorial Monument Photo closeup". Retrieved2010-12-25.
7. Butler, Sue (1971-07-01). "What Happened Aboard Soyuz 11? Reentry Strain Too Much?". Daytona Beach Morning Journal (Daytona Beach, Florida). p. 43.
8. Reuters (1973-11-03). "Space deaths detailed". The Leader-Post (Regina, Saskatchewan). p. 9.
9. "Google Maps - Soyuz 11 Landing Site - Monument Location". Retrieved 2010-12-25.
10. "Google Maps - Soyuz 11 Landing Site - Monument Photo". Retrieved 2010-12-25.
11. "Google Maps - Soyuz 11 Landing Site - Monument Photo closeup". Retrieved2010-12-25.
12. "Flight From Triumph to Tragedy Kills Challenger's 'Seven Heroes'", Palm Beach, FL Post newspaper, January 29, 1986.
13. "Shuttle explodes; crew lost", Frederick, OK - Daily Leader newspaper, January 28, 1986.
14. "Space Shuttle debris rains across Texas", Ocala, FL Star Banner newspaper, February 2, 2003.
15. Check-Six.com - The Crash of X-15A-3
16. "Pilot Killed As X-15 Falls From Altitude Of 50 Miles", Toledo Blade newspaper, November 16, 1967.
17. Associated Press (1967-11-16). "Mystery death plunge of X-15 rocket plane". The Windsor Star (Windsor, Ontario). p. 72.
18. Associated Press (1986-04-06). "Soviets admit cosmonaut's death". Wilmington Morning Star (Wilmington, North Carolina). p. 6.
19. "Crash Kills Astronaut", Richland, WA - Tri City Herald, Nov. 1, 1964
20. "Goose Hit Jet, Killing Astronaut", The Miami News, Nov. 17, 1964
21. "2 Astronauts Die In Plane Crash", The Tuscaloosa News, Feb. 28, 1966
22. "See - Bassett Backup Crew Gets Gemini", Daytona Beach, FL - Morning Journal newspaper, Mar 1, 1966
23. "One Astronaut Cried 'Fire' Before All Died", Daytona Beach, FL News-Journal Newspaper, Jan 29, 1967
24. "Williams Wanted To Be First On The Moon", St. Petersburg, FL - Evening Independent newspaper, Oct. 6, 1967
25. "Board Pinpoints Astronaut's Death", Sarasota, FL - Herald-Tribune newspaper, Jun. 7, 1968
26. "Disasters and Accidents In Manned Spaceflight, By David Shayler; pgs 84, 85",Published by Springer, 2000
27. "Air Crash Kills Astro", Nashua, NH - Telegraph newspaper, Dec. 9, 1967
28. United Press International (1968-03-29). "Spaceman Gagarin Stayed With Plane to Save Village". Montreal Gazette (Montreal). p. 2. Retrieved 2013-03-18.
29. Agence France-Presse (2011-04-08). "Russia sheds light on Gagarin death".News.com.au (Sydney, Australia). Archived from the original on 2013-03-18.
30. "Vozovikov", Encyclopedia Astronautica
31. David Shayler (June 2000). Disasters and accidents in manned spaceflight. Springer. p. 470. ISBN 1-85233-225-5.
32. American Press (1996-03-06). "Report: First Man In Space Nearly Died In The Attempt". The Durant Daily Democrat (Durant, Oklahoma).
33. Webb Jr., Alvin B. (1961-07-21). "Space Cabin Sinks After Hatch 'Blows'". The Deseret News (Salt Lake City, Utah).
34. "The Liberty Bell 7 Recovery". Blacksburg, Virginia: UXB. 2011. Archived from the original on 2013-03-18. Retrieved 2013-03-18.
35. CBS News video for Gemini 6A Launch Abort
36. Volker, Al (1966-03-27). "Astronaut Feared 'Break-Up'". The Miami News.
37. "Apollo Hit Twice By Lightning", Salt Lake City, Utah - Deseret newspaper, Dec 17, 1969
38. "Apollo Struck Twice By Lightning", Hopkinsville, Kentucky - New Era newspaper, Nov 22, 1969
39. "Moon Men Healthy, Resting", The Fort Scott, KS - Tribune newspaper, Nov 25, 1969
40. "Third U.S. lunar mission leaves pad without hitch", Eugene, OR - Register-Guard newspaper, Apr 11, 1970
41. "Apollo 13 on way after engine fails", The Age newspaper, Apr 13, 1970
42. "Apollo 14 Tests Wait For Month", Youngstown Vindicator newspaper, Apr 29, 1970
43. NASA's official report (REPORT OF APOLLO 13 REVIEW BOARD) does not use the word "explosion" in describing the tank failure. Rupture disks and other safety measures were present to prevent a catastrophic explosion, and analysis of pressure readings and subsequent ground-testing determined that these safety measures worked as designed.See findings 26 and 27 on page 195 (5-22) of the NASA report.
44. "Magnitude Of Apollo 13 Damage Astounded Crew", Lodi, CA News-Sentinel, Apr. 18, 1970
45. "Rocket Fuel Gets Blame In Apollo Parachute Fluke", Lumberton, NC - The Robesonian newspaper, Aug 13, 1971
46. "Brand Takes Blame For Apollo Gas Leak", Florence, AL - Times Daily newspaper, Aug. 10, 1975
47. "Cosmonauts Land in Lake, Blizzard", Milwaukee Journal newspaper, Oct 18, 1976
48. "Shock Wave Doesn't Worry Shuttle Crew", Toledo Blade newspaper, Sep 16, 1981
49. "Shuttle shock wave problem still puzzles NASA", Richland, WA - Tri-City Herald newspaper, Sep 11, 1981
50. "Shuttle's Pressure Problem Studied", Toledo Blade newspaper, Jun 27, 1981
51. "Space Shuttle Columbia Nears Second Flight", Sarasota Herald Tribune newspaper, Oct 25, 1981
52. "Fuel Devices on Space Shuttle Were on Fire During Landing", Schenectady Gazette newspaper, Dec 12, 1983
53. "Engineers Study Blaze Aboard Columbia", Ocala Star-Banner newspaper, Dec 14, 1983
54. Dumoulin (2000).
55. United Press International (1985-07-30). "Shuttle OK after close call". Record-Journal(Meriden, Connecticut). p. 1.
56. Harland (2005), pp. 173—174.
57. Furniss, Shayler, Shayler (2007), p. 355.
58. "STS-37 Space Shuttle Mission Report May 1991 - NASA-CR-193062", Extravehicular Activity Evaluation, Page 16, accessed online 4 Jan, 2011
59. "Damage suffered by space shuttle", Portsmouth, OH - Daily Times newspaper, Oct 8, 1993
60. "NASA-1 Norm Thagard: An Ending and a Beginning", NASA History.Gov website, accessed online Jan 27, 2011
61. "A Toxic Leak Haunts the Shuttle Crew", New York Times, December 16, 2006
62. "Moscow, we have a problem: our spacecraft is lost", The London Sunday Times newspaper, May 5, 2003
63. "Soyuz misses its mark but still finds Earth safely", USA Today newspaper, May 4, 2003
64. "Space crew reach Kazakh capital". The New Zealand Herald. May 6, 2003. RetrievedOctober 15, 2011.
65. "Private rocket plane goes rolling into space", The Southeast Missourian newspaper, Sep 30, 2004
66. "SpaceShipOne Rolling Rumors: Rutan Sets the Record Straight", Space.com website - posted: 02 October 2004, accessed online 4 Jan, 2011
67. Russia probes Soyuz capsule's perilous re-entry, CNN', April 23, 2008
68. Eckel, Mike, Russian news agency says Soyuz crew was in danger on descent,Associated Press, April 23, 2008 [dead link]
69. Morring, Frank, NASA Urges Caution On Soyuz Reports, Aviation Week & Space Technology, April 23, 2008
70. "South Korean Astronaut Hospitalized", Aviation Week, May 2, 2008
71. "EVA-23 terminated due to EVA-23 terminated due to Parmitano EMU issue",NASASpaceFlight, July 16, 2013
72. "Spacewalk aborted by spacesuit water leak", SpaceflightNow, July 16, 2013
73. "Tuesday Spacewalk Ended Early", NASA, July 16, 2013
74. "German Rocket Motor Expert Loses His Life", Reading, PA - Eagle newspaper, May 18, 1930
75. "Science Rocket Explodes, Kills 1", Salt Lake City, Utah - Deseret News, Feb 2, 1931
76. "Blast Kills Maker of Rocket Airplane", Pittsburgh Press newspaper, Oct 12, 1933
77. "Cape Probes Reason For Tragedy", The Miami News, Apr 15, 1964
78. "Static Electricity Blamed For Fatal Rocket Mishaps", Reading, PA - Eagle newspaper, Apr 24, 1964
79. "Burns Kill Third Rocket Ignition Victim", Evening Independent newspaper, May 5, 1964
80. "German's 'air mail' idea goes up in smoke", Scotsman.com, Sep 16, 2005
81. Siddiq (2000), p. 874.
82. "Soviet rocket blast left 48 dead", BBC News, Apr 8, 2000
83. "1 killed, 9 hurt as rocket booster ignites", Salt Lake City - Deseret newspaper, Sep 8, 1990
84. "Man's body recovered after Titan explosion", Schenectady, New York - Sunday Gazette newspaper, Sep 9, 1990
85. "Pipe explosion sets back Japanese space program", Eugene, Oregon Register-Guard newspaper, August 11, 1991
86. "1 killed as rocket goes wild", Reading Eagle newspaper, February 28, 1993
87. Ted Cochran (1 July 2002). "Ignition! But only when you want it". MASA Planet. Retrieved 1 November 2014.
88. Select Committee of the United States House of Representatives (3 January 1999)."Satellite Launches in the PRC: Loral". U.S. National Security and Military/Commercial Concerns with the People's Republic of China. Retrieved 6 December 2010.
89. "Russian Space Rocket Explodes, One Killed", Daily News newspaper, Oct. 17, 2002
90. "Rocket explosion kills 21 in Brazil", Boston Globe, Aug 23, 2003
91. Walker, Peter, "Three die in Branson's space tourism tests", Guardian Unlimited, July 27, 2007
92. "Cape Worker Dies", Daytona Beach, FL - Morning Journal newspaper, May 17, 1968
93. "Worker Plunges To Death At Cape", Sarasota, FL - Herald-Tribune newspaper, May 6, 1981
94. NASA - 1981 KSC Chronology Part 1 - pages 84, 85, 100; Part 2 - pages 181, 194, 195,
95. Sam Kean, The Disappearing Spoon (2010), p. 188
96. "One Dead In Shuttle Accident", Spartanburg, SC - Herald-Journal Newspaper, Mar 20, 1981
97. "Space shuttle worker dies in fall at launch pad", MSNBC.com - 3rd paragraph from bottom of article., 3/14/2011
98. "Worker on shuttle falls to death", Nashua, NH - The Telegraph newspaper, Dec. 5, 1985
99. "Shuttle worker fourth to lose life", Lakeland, FL - Ledger newspaper, Dec. 6, 1985
100."Workman Killed In Accident On Launch Tower", Sarasota, FL - Herald-Tribune newspaper, Dec 23, 1989
101."Fatal accident at the Guiana Space Centre", ESA Portal, May 5, 1993
102."Submission of Enquiry Board's provisional report on fatal accident at Guiana Space Centre", ESA Portal, Nov 30, 1993
103."LAUNCH-PAD DEATH STUDIED", Orlando Sentinel, July 10, 2001
104."Worker Killed by Falling Pipe at LC 37", Space.com, Oct 3, 2001
105."Crane Accident Kills Boeing Worker at Cape", Space.com, Oct 3, 2001
106."Bodies found in cosmodrome debris", BBC News website, May 13, 2002
107."Two men due from injuries in Redstone Arsenal explosion", WAFF.com, June 5, 2010
108.[1]
109.Clark, Stephen (31 October 2014). "Virgin Galactic’s SpaceShipTwo rocket plane crashes on test flight". SpaceflightNow. Retrieved 31 October 2014.


From Wikipedia, the free encyclopedia